A RING B AROMATIC STEROL FROM STROMATA OF EPICHLOE TYPHINA

HIROYUKI KOSHINO, TERUHIKO YOSHIHARA, SADAO SAKAMURA, TADAYUKI SHIMANUKI,* TOHRU SATO* and AKITOSHI TAJIMI†

Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo 060, Japan; *National Glassland Research Institute, Nishinasuno 329-27, Japan; †Hokkaido National Agricultural Experiment Station, Sapporo 061-01, Japan

(Received in revised form 6 June 1988)

Key Word Index—Epichloe typhina; Clavicipitaceae; Phleum pratense; Gramineae; timothy choke disease; sterol; ¹H NMR; ¹³C NMR.

Abstract—A sterol with an aromatized B ring was isolated from stromata of Epichloe typhina growing on Phleum pratense. The structure was established as $1(10 \rightarrow 6)abeo$ -ergosta-5,7,9,22-tetraen-3 α -ol by spectral analysis and synthesis.

INTRODUCTION

Previous investigations on the constituents of stromata of timothy choke disease fungus Epichloe typhina on Phleum pratense led to the isolation of the fungitoxic sesquiterpenes, chokol A, B, C [1], four C-18 hydroxy-unsaturated fatty acids [2] and three phenolic glycerides [3]. The present paper deals with the isolation and structural elucidation of a ring B aromatic sterol, compound 1, as a novel natural product.

RESULTS AND DISCUSSION

Compound 1 was obtained as colourless needles, mp 128–129°, $[\alpha]_D^{24}$ – 22.4° (EtOH; c 0.25) and analysed for C₂₈H₄₂O by high resolution EI mass spectrometry. The UV spectrum exhibited the presence of an aromatic ring (λ_{max}^{MeOH} 273 and 282 nm); the IR spectrum showed hydroxyl group absorption (3350 cm⁻¹). The ¹³C NMR spectrum (Table 1) revealed the presence of 28 carbon atoms including eight sp² carbons and suggested that I had an unusual steroid skeleton with an aromatic ring system. The ¹H NMR spectrum (Table 2) showed good resolved resonances, containing relatively less overlapping signals in the high field region. Accordingly detailed spin decoupling experiments and ¹H-¹³C COSY spectrum revealed the partial structures i-v and assignments. The portion i contained the methine proton (H-3) at δ 4.15 which served as the starting point in the analysis of this spin system. The chemical shift value indicated that this proton was located on a carbon atom bearing a hydroxyl group (C-3, δ 68.3). The value of the coupling constants for the H-2 and H-4 protons suggested that this hydroxyl group was in an equatorial orientation. The chemical shifts of the H-1 and H-4 protons indicated that these two methylene groups were situated on aryl positions. This evidence implied that these four carbons (C- $1 \sim 4$) constituted a six membered ring system together with two aromatic carbons. The portion ii was a fivesubstituted benzene ring with an aromatic proton at δ 6.65 (s, H-7) and a methyl group at δ 2.09 (s, H-19) in the ¹H NMR. The portion iii contained two methylene groups, H-11 (δ 2.72 and 2.76) and H-12(δ 1.64 and 2.22). These values suggested that the former (H-11) was adjacent to an aromatic ring and the latter (H-12) adjacent to a sp³ quarternary carbon (C-13). The coupling constant (J=11.7 Hz) between H-11 and H-12 suggested that these two protons were in the diaxial orientation. The portion is contained an angular methyl group at $\delta 0.59$ (s, H-18) which was located on the above mentioned quarternary carbon (C-13). The portion v contained four methyl groups and a trans double bond at $\delta 5.21$ and $\delta .25$ (J=14.7 Hz, H-22 and H-23, respectively) and comprised the ring D and side chain parts. The portions iii and iv and one aryllic methine group at $\delta 2.66$ (H-14) constituted the ring C system together with two aromatic carbons.

The connection of the A, B and C rings was established by NOE difference spectra. Irradiation of H-1 (δ 2.86) and H-11 (δ 2.74) gave enhancements to H-7 and H-19, respectively. This results indicated that 1 possessed the anthracene skeleton. Additionally, in the decoupling experiments irradiations of H-1 (δ 2.88) and H-14 (δ 2.66) led to enhancements of H-7 by long range coupling, although no splittings were measurable. This evidence supported the results of NOE experiments. The chemical shift (δ 0.59) of the angular methyl group protons H-18 suggested that this methyl group was shielded by the aromatic B ring [4], and, therefore, the stereochemistry of the C/D ring fusion was trans. Consequently, the planar structure

Table 1. ¹³C NMR spectral data of 1 (67.9 MHz, COM and INEPT, CDCl₃, TMS int. standard)

С		C	
ı	27.6	15	24.2
2	31.4	16	29.4
3	68.3	17	55.2
4	36.6	18	11.4
5	134.2a	19	14.6
6	132.5ª	20	40.6
7	123.9	21	21.1
8	137.9a	22	135.6
9	132.14a	23	132.10
10	129.8	24	42.9
11	25.8	25	33.2
12	37.2	26	20.0
13	41.8	27	19.7
14	51.9	28	17.7

^a Assignments may be interchanged.

of 1 including the hydroxyl group position was established as depicted. This compound has been synthesized by Whalley et al. [5, 6]. Comparison of the CD spectrum of isolated 1 with those reported for synthetic 3α and 3β isomers[6] led to 1 having the 3α stereochemistry. Configuration of the C-24 position was determined to be R by the 13 C NMR chemical shifts of C-24 and C-28 [7]. Therefore, the structure of 1 was established as $1(10\rightarrow6)$ abeo-ergosta-5, 7, 9, 22-tetraen- 3α -ol. To confirm the structure of 1, we prepared this compound following the method of Whalley [5]. The isolated 1 was identical with synthetic 1 by direct comparison of all spectral data.

To our knowledge there have been some investigations on synthesis of anthrasteroids [5, 6, 8] and acidic rearrangement from an unsaturated sterol [5] and isolation of anthrasteroid hydrocarbons from sediments [9]. Also, recently ring B aromatic sterols with a phenanthrene skeleton were isolated from a soil amoeba Acanthamoeba polyphaga [10]. However, compound 1 is the first isolation of an anthracene type sterol from a natural source.

EXPERIMENTAL

Isolation. Stromata of E. typhina, (20 kg) were extracted with 70% EtOH (1031). The ext was evapd and the ag. residue partitioned between n-hexane and H2O. The n-hexane soln was dried (Na₂SO₄), filtered, evapd to dryness and the residue (172 g) chromatographed on a silica gel column × 3 with CHCl₃. A fraction containing sterols (10.1 g) was separated by CC on silica gel (200 g) with EtOAc-C₆H₆ (1:9), CC on silica gel (50 g) with EtOAc-n-hexane (1:4) and CC on silica gel (50 g) with EtOAc-n-hexane (1:9). A fraction (151 mg) was purified on a Lobar Si 60 column using CHCl₃ and recrystallized from MeOH to yield compound 1 (18 mg) as colourless needles, mp 128-129°. FDMS m/z: 394[M]⁺; EIMS m/z(rel. int.): 394.3240[M]⁺ (100) (calcd for $C_{28}H_{42}O$: 394.3236), 376[M-H₂O]⁺ (26.1), 361[M $-H_2O-Me]^+$ (3.3), 269[M – side chain] + (15.1), 267 (11.6), 252 (18.3), 251[M-H₂O-side chain] + (82.0), 242 (18.3), 227 (24.8), 215 (20.0), 197 (39.4), 69 (18.3); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 2960, 2870. 1725, 1600, 1455, 1370, 1320, 1260, 1220, 1185, 1145, 1070, 1050,

Table 2. ¹H NMR spectral data of 1 (500 MHz, CDCl₃, TMS int. standard)

H		H	
1α	2.88 ddd (16.6, 5.9, 5.4)	16α	1.47° m*
1β	2.82 ddd (16.6, 6.8, 5.9)	16β	1.91° m*
2α	1.75 dddd (15.1, 9.7, 6.8, 5.4)	17	1.36 ddd (9.3, 9.3, 9.3)
2β	2.02 dddd (15.1, 5.9, 5.9, 2.9)	18	0.59 s
3	4.15 dddd (9.7, 8.1, 5.4, 2.9)	19	2.09 s
4α	2.55 dd (16.1, 8.1)	20	2.08 ddq (9.3, 7.8, 6.8)
4β	3.06 dd (16.1, 5.4)	21	$1.09 \ d(6.8)$
7	6.65 s	22	5.21 dd (14.7, 7.8)
11α	2.72 ddd (10.3, 8.3, 1.5)	23	5.25 dd (14.7, 6.8)
11β	2.76 ddd (11.7, 10.3, 7.8)	24	1.87 m*
12α	1.64 ddd (12.7, 11.7, 8.3)	25	1.49 m*
12β	2.22 ddd (12.7, 7.8, 1.5)	26	0.85 d(7.3)
14	2.66 dd(11.7, 7.8)	27	0.84 d(6.8)
15α	2.02 m*	28	0.94 d(6.8)
15β	1.44 m*		

Coupling constants (J in Hz) are given in parentheses.

*J(Hz): 14, 15 α = 7.8; 14, 15 β = 11.7; 16 α , 17 = 9.3; 16 β , 17 = 9.3; 23, 24 = 6.8; 24, 28 = 6.8; 25, 26 = 7.3; 25, 27 = 6.8. Not measured: 15 α , 15 β ; 15 α , 16 α ; 15 α , 16 β ; 15 β , 16 α ; 15 β , 16 α ; 15 β , 16 α ; 15 α , 16 β ; 24, 25.

1025, 970, 870, 740; UV $\lambda_{\rm max}^{\rm MeOH}$ nm(ϵ): 273 (946), 282 (965); CD $\lambda_{\rm ext}^{\rm MeOH}$ nm($\Delta\epsilon$): 225 (-0.57), 233 (+0.10), 239 (-0.12), 247 (-0.05), 278 (-0.27); $[\alpha]_{\rm D}^{24}$ -22.4° (EtOH, ϵ 0.25); ¹³C NMR (Table 1); ¹H NMR (Table 2); spin decoupling experiments were recorded at 500 MHz and ¹H $^{-13}$ C COSY and NOE difference spectra were recorded at 270 MHz.

Preparation of 1.1 was prepd from ergosterol according to the method of ref.[5], purified by CC on silica gel with EtOAc-n-hexane (1:4) and recrystallized from MeOH; mp 130–131°; $[\alpha]_D^{23}$ – 19.5° (EtOH, c 0.38).

REFERENCES

- Yoshihara, T., Togiya, S., Koshino, H., Sakamura, S., Shimanuki, T., Sato, T. and Tajimi, A. (1985) Tetrahedron Letters 26, 5551.
- Koshino, H., Togiya, S., Yoshihara, T., Sakamura, S., Shimanuki, T., Sato, T. and Tajimi, A. (1987) Tetrahedron Letters 28, 73
- Koshino, H., Terada, S., Yoshihara, T., Sakamura, S., Shimanuki, T., Sato, T. and Tajimi, A. (1988) *Phytochemistry* 27, 1333.
- Steele, J. A., Cohen, L. A. and Mosettig, E. (1963) J. Am. Chem. Soc. 85, 1134.
- Bosworth, N., Emke, A., Midgley, J. M., Moore, C. J., Whalley, W. B., Ferguson, G. and Marsh, W. C. (1977) J. Chem. Soc. Perkin Trans 1 805.
- Emke, A., Midgley, J. M. and Whalley, W. B. (1980) J. Chem. Soc. Perkin Trans 1 1779.
- Wright, J. L. C., McInnes, A. G., Shimizu, S., Smith, D. G., Walter, J. A., Idler, D. and Khalil, W. (1978) Can. J. Chem. 56, 1898.
- 8. Nijs, H. de and Speckamp, W. N. (1973) *Tetrahedron Letters* 813.
- 9. Hussler, G. and Albrecht, P. (1983) Nature 304, 262.
- Bisseret, P., Adam, H. and Rohmer, M. (1987) J. Chem. Soc., Chem. Commun. 693.

^aAssignments may be reversed.